
IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 23, 2024 195

Low-Cost and Highly-Efficient Bit-Stream Generator
for Stochastic Computing Division

Mehran Shoushtari Moghadam , Graduate Student Member, IEEE, Sercan Aygun , Member, IEEE, Sina Asadi ,
and M. Hassan Najafi , Senior Member, IEEE

Abstract—Stochastic computing (SC) division circuits have
gained importance in recent years compared to other arithmetic
circuits due to their low complexity as a result of an accuracy
tradeoff. Designing a division circuit is already complex in conven-
tional binary-based hardware systems. Developing an accurate and
efficient SC division circuit is an open research problem. Prior work
proposed different SC division circuits by using multiplexers and
JK-flip-flop units, which may require correlated or uncorrelated
input bit-streams. This study is primarily centered on exploring a
cost-effective and highly efficient bit-stream generator specifically
designed for SC division circuits. In conjunction with this objective,
we assess the performance of multiple bit-stream generators and
analyze the impact of correlation on SC division. We compare dif-
ferent designs in terms of accuracy and hardware cost. Moreover,
we discuss a low-cost and energy-efficient bit-stream generator
via powers-of-2 Van der Corput (VDC) sequences. Among the
tested sequence generators, our best results were achieved with
VDC sequences. Our evaluation results demonstrate that the novel
VDC-based design yields promising outputs, resulting in a 15.5%
reduction in the area-delay product and an 18.05% saving in energy
consumption for the same accuracy level compared to conventional
bit-stream generators. Significantly, our investigation reveals that
employing the proposed generator improves the precision com-
pared to the state-of-the-art. We validate the proposed architecture
with an image processing case study, achieving high PSNR and
structural similarity values.

Index Terms—Division, image processing, low-discrepancy
sequences, random number generation, stochastic computing.

I. INTRODUCTION

S TOCHASTIC Computing (SC) has emerged as an alter-
native computing paradigm, drawing attention to low-cost

and noise-tolerant hardware designs for complex arithmetic
operations [1]. In SC, numbers are represented using uniform
random bit-streams. Unlike traditional binary computing, which
operates on positional inputs, SC processes bit-streams with no
significant digit. In this unconventional representation, the ratio

Manuscript received 16 October 2023; revised 18 December 2023; accepted
16 January 2024. Date of publication 26 January 2024; date of current version 7
March 2024. This work was supported in part by the National Science Founda-
tion (NSF) under Grant 2339701 and Grant 2019511, in part by the Louisiana
Board of Regents Support Fund under Grant LEQSF(2020-23)-RD-A-26, and
in part by Generous Gifts from Cisco, Xilinx, and Nvidia. The review of this
paper was arranged by guest editors of the Special Issue for NanoArch2022.
(Corresponding author: Sercan Aygun.)

The authors are with the School of Computing and Informatics, University
of Louisiana at Lafayette, Lafayette, LA 70503 USA (e-mail: m.moghadam@
louisiana.edu; sercan.aygun@louisiana.edu; sina.asadi1@louisiana.edu; najafi
@louisiana.edu).

Digital Object Identifier 10.1109/TNANO.2024.3358395

Fig. 1. Generating bit-streams, (a) by sharing a common RNG (correlated
case), and (b) with different RNGs (uncorrelated case).

of the number of 1s to the length of the bit-stream determines
the data value. By harnessing the information conveyed by
logic-1 and logic-0 and employing unipolar or bipolar
encoding [2], complex arithmetic operations can be realized with
simple logic circuits.

Bit-stream generation is an essential step in SC, which directly
affects the accuracy of the computations. To generate stochastic
bit-streams, a random number generator (RNG) alongside a
binary comparator is utilized. Correlated bit-streams, with high
overlap in the position of 1s, can be generated by sharing a
common RNG between different inputs, as depicted in Fig. 1(a).
Using a different RNG for each input can produce uncorrelated
bit-streams as shown in Fig. 1(b). Correlation or independence
directly impacts the accuracy and functionality of stochastic
circuits [3]. For instance, anAND gate is used as an SC multiplier
when independent bit-streams are connected to its inputs. The
same gate acts as a minimum operator when there is a high
(positive) correlation (i.e., maximal overlap) between input bit-
streams [4].

The initial development of SC-based dividers is attributed
to Gaines’s adaptive digital element (ADDIE) design [1]. An
alternative approach involves the use of a simpleJK flip-flop [5],
[6]. Chen and Hayes [7] explored a low-cost stochastic division
architecture known as Correlated Division (CORDIV), which
takes advantage of correlation. Chu [8] proposed a Saturating
Subtractor Division (SSDIV) design incorporating a saturating
subtractor circuit alongside a JK flip-flop. Wang et al. [9] intro-
duced another stochastic division design that evaluates min(X,Y)

max(X,Y)

as the output bit-stream where X and Y are stochastic dividend
and divisor bit-streams, respectively. We call this Min-Max-
based SC division or MMDIV.

The focus of this work, distinct from prior work, is to de-
velop an effective bit-stream generator that can work for all
state-of-the-art (SOTA) SC division circuits. Previous designs

1536-125X © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on April 02,2024 at 19:24:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1325-1664
https://orcid.org/0000-0002-4615-7914
https://orcid.org/0009-0005-6839-3175
https://orcid.org/0000-0002-4655-6229
mailto:m.moghadam@penalty -@M louisiana.edu
mailto:m.moghadam@penalty -@M louisiana.edu
mailto:sercan.aygun@louisiana.edu
mailto:sina.asadi1@louisiana.edu
mailto:najafipenalty -@M @louisiana.edu
mailto:najafipenalty -@M @louisiana.edu

196 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 23, 2024

Fig. 2. Proposed exploration and the motivations.

used two comparators and a shared RNG (see Fig. 1(a)) to
generate correlated bit-streams. In contrast, our novel design
incorporates a more accurate division operation employing an
efficient bit-stream generator comprising a counter, an RNG, and
a comparator. We validate the designed circuit with an image
matting case study. To the best of our knowledge, this is the
first time image matting is implemented in SC literature. Image
matting, based on the problem of separating foreground and
background sections in composite images, is a method used to
determine the blending ratio of pixel values (alpha values) at the
intersection points of two composite images [10]. This image
processing task requires many division operations. We explore
three exemplary topologies in the divider circuits: CORDIV,
SSDIV, and MMDIV as SOTA designs that share the common
characteristic of being fed with correlated bit-streams.

The majority of prior SC division circuits work with correlated
bit-streams, offering both low-cost and highly accurate results.
However, some studies, like [11], also employ uncorrelated bit-
streams. We explore the performance of different SOTA circuits
depicted in Fig. 2. We examine different types of bit-streams
and bit-stream generators from linear-feedback shift registers
(LFSRs) [12] to Finite-State Machine (FSM)-based [13] gener-
ators. We employ high-quality random source generators such
as Sobol [14] and Van der Corput (VDC) [15] that provide low
discrepancy (LD) quasi-orthogonal bit-streams. LD sequences
are known in the literature as random sources that achieve high
accuracy for SC-based arithmetic [16]. There are prior hardware
designs for efficient generation of LD sequences [13], [17], [18],
[19]. Overall, our solution achieves a lower arithmetic error
of up to 88% improvement when utilizing the simplest Sobol
sequence with the SOTA division circuits. In summary, the main
contributions of this study are as follows:

❶ We explore an adaptive and versatile bit-stream generator
(sequence generator [20] + correlator [21]) that conforms to the
well-known SOTA SC division circuits.

❷ The presented bit-stream generator is compatible with dif-
ferent random sequences. We provide a comparative benchmark
with different types of sequences and SOTA circuits.

❸ For the first time, we implement the image matting prob-
lem, a challenging application that requires extensive division
operations, in the SC domain.

The remaining sections are organized as follows: Section II
provides an overview of the fundamentals of SC and the division
operation. Section III introduces the architecture of the pro-
posed bit-stream generator. Section IV presents a comprehensive
design space exploration (DSE) by combining the bit-stream

TABLE I
CHRONOLOGICAL DEVELOPMENT OF SC DIVIDERS (FF: FLIP-FLOP)

generation step with different quasi-random (Sobol and VDC)
and pseudo-random (LFSR-based) numbers and the SOTA SC
dividers. Section V evaluates the performance of the overall divi-
sion architecture using the SC-based image matting case study.
Section VI presents the findings from a hardware perspective.
Finally, Section VII concludes the study.

II. BACKGROUND

SC has emerged as a promising model of computation, of-
fering remarkable advantages such as resilience to noise, high
parallelism, and power efficiency. SC has found applications in
various domains, including image processing [22], sorting [4],
and machine learning [23], among others [2]. The key strength
of SC lies in its ability to perform complex arithmetic operations
using simple logic gates, leading to significant cost savings
in hardware implementation. A crucial step in SC systems is
the conversion of real numbers into bit-streams, wherein each
bit position holds equal significance, distinguishing it from
conventional binary representation. SC operates on data within
the unit interval [0, 1]. For instance, a data value of 0.5 is
represented by a bit-stream with 50% of its bits set to 1. This
encoding format is known as unipolar encoding (UPE). In UPE,
the probability of observing a ‘1’ in the bit-stream X , denoted
as P (X = 1), equals the input value x. Typically, generating a
bit-stream of length N involves comparing N random numbers
(R1. . .RN) with the input value over N cycles. If the input
value is greater than the random number, a logic 1 is produced;
otherwise, a logic 0 is produced. The occurrence of logic 1s
in the resulting bit-stream depends on the sequence of random
numbers. In scenarios involving signed values (x within the
range −1 ≤ x ≤ 1), bipolar encoding (BPE) is employed [2].

Multiplication of bit-streams in UPE is achieved through
bitwiseAND operation [3]. To ensure accurate multiplication, the
input bit-streams must be uncorrelated. Performing bitwise AND
on correlated bit-streams, i.e., bit-streams with the maximum
overlap in the positions of 1s, yields the input bit-stream with
minimum value [24]. Scaled addition in SC is realized using a
multiplexer (MUX) unit for both encoding formats [25]. While
the main inputs of the MUX can be correlated, they should be
uncorrelated with the select input bit-stream.

SC supports a wide range of arithmetic operations, including
division. Table I summarizes the important prior SC division

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on April 02,2024 at 19:24:02 UTC from IEEE Xplore. Restrictions apply.

MOGHADAM et al.: LOW-COST AND HIGHLY-EFFICIENT BIT-STREAM GENERATOR FOR STOCHASTIC COMPUTING DIVISION 197

Fig. 3. Proposed approach incorporating a bit-stream generator (including
random sequence sources -Sobol, VDC, LFSR- [20]) and correlator with a
down counter to generate the correlated second bit-stream [21]. It is noted that
X < Y for the SC division operation (XY). **Among various options, the VDC
stands out as a promising candidate for counter-based-only hardware design
targeting random number generation.

circuits. Gaines’s pioneering ADDIE design [1] stands as the
first SC-based divider. Ananth’s subsequent iteration [26] builds
upon Gaines’s ADDIE, aiming for improved stochastic number
conversion with reduced error. Expanding on this foundation,
Chen and Hayes [7] introduced CORDIV, leveraging correlation
for stochastic division. CORDIV optimizes area cost through a
shared RNG, one MUX, and a single D flip-flop. Chu [8] refines
division with SSDIV. He demonstrates a correlation-based ap-
proach by exploiting saturating subtractors to fine-tune approx-
imations from JK flip-flops. The MMDIV design [9] enhances
accuracy by incorporating delay elements (DEs), effectively
decorrelating inputs of JK flip-flop through a concatenation of
D flip-flops.

In addition to more complex designs, simple yet effective
division circuits have been investigated in the SC literature. For
instance, a JK flip-flop can serve as an approximate divider [5],
[6]. By applying the input bit-streams X1 and X2 to the J and K
ports of the JK flip-flop, respectively, and setting the probabili-
ties PJ and PK , the output bit-stream Y is obtained from the Q
port, resulting in a probability PY = PJ/(PJ + PK) [6], [27].
Although this provides an approximate division, recent efforts
have focused on improving the accuracy of the JK flip-flop
divider by converging towardPY = PJ/PK [8], [9], [11]. These
prior endeavors highlight the ongoing research and development
aimed at advancing division circuits in SC. By harnessing the
inherent properties of SC, such as correlation, and utilizing
various components, such as RNGs, comparators, MUX, and
flip-flops, researchers are continuously striving to enhance the
accuracy and efficiency of SC division.

III. PROPOSED APPROACH

The conventional approach for generating correlated bit-
streams (Fig. 1(a)) uses a shared RNG with two comparators.
This work employs a design with 1×RNG + 1×Comparator
(= Bit-stream Generator) for the first and intermediary stream
that affects the second stream. The design is combined with a
down counter to generate the second bit-stream with a proper
correlation. Fig. 3 illustrates our proposed solution. The first
bit-stream generator determines the RNG for any of the Se-
quences in Fig. 2 (Sobol, VDC, or LFSR) and correlates the first
generated bit-stream through the down counter. The foundation
of this design, established in [21], emphasizes the importance of
examining the design and its performance with different types of
random source generators and division topologies. Particularly,

Algorithm 1: Efficient Correlated Bit-Stream Genera-
tion [21].

1: Input: Dividend 0 ≤ X ≤ N , Divisor 0 < Y ≤ N ,
Bit-stream size N

2: Output: Xstream, Ystream

3: Initialize LD_seq as any low-discrepancy sequence
(or LFSR)

4: for i = 1 to N do
5: if (Y −1

N > LD_seq(i)) then
6: Ystream(i) = 1
7: end if
8: end for
9: Set m = X

10: for j = 1 to N do
11: if m > 0 then
12: Xstream(j) = Ystream(j)
13: if Ystream(j) = 1 then
14: m = m− 1
15: end if
16: else
17: Xstream(j) = 0
18: end if
19: end for
20: return Xstream, Ystream

Algorithm 2: CORDIV [7].
1: Input: Xstream and Ystream

2: Output: Quotient ZCORDIV

3: Initialize Z with logic-0s
4: for k = 1 to N do
5: Z(k + 1) =

(¬Ystream(k) ∧ Z(k)) ∨ (Ystream(k) ∧Xstream(k))
6: end for
7: return ZCORDIV = Z

using new random sources such as VDC is promising due to
their counter-only design and offering an accuracy close to the
Sobol-based design but with significantly lighter hardware. We
differentiate from the prior art at this point and concentrate on
the bit-stream generator.

Algorithm 1, as its foundations for correlated bit-stream
generation discussed in [21] (by coupling the generator with
FSM-based random source), outlines the steps for suitable cor-
related bit-stream generation. Once the to-be-divided values X
and Y are converted into bit-streams, they are used as inputs
to the CORDIV design. The Y bit-stream is initially gener-
ated by using any LD sequence (or LFSR). Concurrently, the
second bit-stream is generated with proper correlation using
the down counter. The proposed correlator circuit receives the
data in binary format. The Y bit-stream is produced directly by
a bit-stream generator, while the X bit-stream duplicates the
Y bit-stream. This procedure goes on until the down counter,
starting from x, counts down at each clock cycle to reach zero.
This activates the zero port that forces the remaining bits to
zero. The enable signal of the down counter is controlled by
the Y bit-stream. Here, at the cost of a down counter and an

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on April 02,2024 at 19:24:02 UTC from IEEE Xplore. Restrictions apply.

198 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 23, 2024

TABLE II
MAE(%) COMPARISON OF 8-BIT PRECISION SC DIVISION OPERATION WITH

THE CONVENTIONAL CORRELATED BIT-STREAM GENERATORS

AND gate, we generated a bit-stream (divisor) correlated with
another bit-stream (dividend). After generating bit-streams with
the proposed approach, Algorithm 2 performs the division oper-
ation according to the MUX structure of CORDIV. This part can
be replaced with any division circuit operating with correlated
streams.

IV. DESIGN SPACE EXPLORATION (DSE)

In this section, we conduct a comprehensive accuracy evalu-
ation of the SOTA SC division designs by incorporating two LD
sequence generators, Sobol and VDC. We compare the accuracy
of these designs with that of the conventional LFSR-based
designs. To assess the accuracy of the SC dividers, we utilize
the Maximum and Mean Absolute Error (MAE) metrics for all
possible 8-bit precision values within the range of [0, 255]. Both
the dividend and divisor are assigned 28-bit SC bit-streams.
Table II presents the MAE comparison of the SOTA SC di-
viders that incorporate shared RNGs for generating correlated
bit-streams. The numbers underneath each value (in parentheses)
correspond to the maximum error for that specific configuration.
We used the first 5 Sobol sequences from MATLAB for the
Sobol-based and the maximal length LFSR with polynomial
function x8 + x4 + x3 + x2 + 1 for the LFSR-based designs.

We observe that using LFSR with the MMDIV design im-
proves the accuracy when the number of DEs increases. How-
ever, using Sobol sequences instead of LFSR yields even better
accuracy without the need for any DEs. Hence, this approach
reduces the hardware cost by eliminating DEs. For the VDC
sequence, we considered bases 2, 4, 8, and 16 during sequence
generation [20]. Notably, the base-2 VDC is similar to the first
Sobol sequence (further details can be found in Section VI). The
accuracy results for all SC division designs were superior when
using VDC with bases 2 and 4 compared to the LFSR case.

TABLE III
MAE(%) COMPARISON OF 8-BIT PRECISION SC DIVISION OPERATION WITH

THE PROPOSED CORRELATED BIT-STREAM GENERATORS

Table III presents the accuracy results for the proposed method
applied to the SOTA SC division designs. We used the same
configuration as in Table II. In the LFSR case, increasing the
number of DEs in the MMDIV design led to a degradation in
accuracy because by adding more DEs, the required indepen-
dence [9] is diminished due to utilizing the proposed corre-
lated SC bit-streams. This property also affects the hardware
footprint of the division circuit. Similarly, for Sobol sequences,
the accuracy behavior was consistent. Consequently, there is
no need to incorporate DEs in the MMDIV design when using
the proposed method. Compared to the results in Table II, the
proposed method demonstrated significant improvements in the
accuracy of the SC division. As can be seen in Tables II and
III, the accuracy improvement regarding the errors for the first
Sobol sequence is up to 88%. For the LFSR case, the proposed
method yielded an accuracy improvement of over two times.
As can be seen, compared to the shared RNG method, all the
VDC-based designs are superior to the LFSR counterpart with
the proposed bit-stream generator. Notably, the proposed method
achieves the same level of accuracy for both the CORDIV and
SSDIV designs. In addition to SC-based division, the VDC-
based bit-stream generator shows better performance compared
to other generators in various computing elements, including the
SC multiplier and scaled adder [20], [28].

V. SC IMAGE PROCESSING INVOLVING DIVISION

In this section, we evaluate the performance of the proposed
approach in an image processing case study. SC gained popu-
larity for the simple execution of complex tasks such as image
processing tasks [29]. Fig. 4 provides an overview of important
prior SC case studies in the image processing domain and the
bit-stream size used in each case. As can be seen, numerous
applications, from edge detection to depth sensing, have been

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on April 02,2024 at 19:24:02 UTC from IEEE Xplore. Restrictions apply.

MOGHADAM et al.: LOW-COST AND HIGHLY-EFFICIENT BIT-STREAM GENERATOR FOR STOCHASTIC COMPUTING DIVISION 199

Fig. 4. SC image processing applications [32]. (→ [33], → [29],
→ [34], → [35], → [36], → [22], → [37], [38], → [39],
→ [40].)

explored. However, despite exploring many applications, there
is no definitive solution for separating composite images created
through image blending. Image blending involves merging fore-
ground and background images to create a composite image [30].
By reversing the process, image matting is a more intricate task
that encompasses the extraction of the foreground object from
a composite image [31]. Achieving accurate separation requires
iterative division operations. Initially, we have three inputs:
a© B (Background) image, b© F (Foreground) image, and c©

foreground opacity or matte (the foreground image includes this
additional information in the form of an extra image channel,
alpha: α [41], which contains green screen background infor-
mation). While opacity c© information provides a value of 0 for
entirely background regions, it offers precise values within the
range [0,1] specifically for the foreground b© and intersection
areas. The image matting is based on alpha estimation that is
derived from: I = B × (1− α) + F × α (blending formula),
where I as an output represents the merged image [42]. This op-
eration involves multiplication, addition, subtraction-from-1 and
can be performed in a single iteration; however, estimating theα
value from the merged image, along with the background a© and
foreground b© information, is a challenging task that requires
multiple iterations. The refinement equation can be expressed as
α̂ = I−B

F−B and is called alpha estimation [31]. Alpha estimation
requires the following inputs: I (the merged image using the
original alpha), B, and F . It is essential to emphasize that
alpha estimation involves a division operation. The result of
this operation outputs the estimated transparency, α̂, particularly
affecting the edge pixels of the foreground object, which, in turn,
contributes to the overall natural appearance of the image.

He et al. [43] illustrate the potential number of estimated
points within the FB search space using an example image
of size 800 × 600. The estimation process indicates that the
number of image pixel couples for estimation can reach up
to 108 for the given example. The alpha estimation formula
(α̂) is iteratively employed for each operation. Considering the
high cost of employing a binary divider in custom hardware, a
low-cost and efficient division circuit can help in the accurate
implementation of this task. The α̂ estimation transforms into an
optimization problem for estimating approximate intersection
points, which are not precisely known. Generally, a broader
border area, including a third region apart from foreground
and background, is defined as the intersection region (trimap

Fig. 5. Image matting performance on alpha estimation using division opera-
tion. The proposed bit-stream generator is fed to the CORDIV design. (a) The
original alpha- and estimated alpha-related calculations yield blended images to
be used as a performance check (I vs. Î). (b) Performance results of different
Sequences used in the shared RNG method. (c) Performance results of different
Sequences used in the proposed generator. PSNR: Peak Signal-to-Noise Ratio,
SSIM: Structural Similarity. The maximal length LFSR with the polynomial
x8 + x4 + x3 + x2 + 1 was used. N = 28.

TABLE IV
HARDWARE COST OF GENERATING ONE SC BIT-STREAM FOR N = 28

images [44]), and optimal α̂ values are sought for this region.
This process requires numerous division operations.

Fig. 5 illustrates the performance results of alpha estima-
tion for X = I −B and Y = F −B using the proposed bit-
stream generator and CORDIV circuit (α̂ = X

Y). The example
in Fig. 5(a) demonstrates the alpha estimation. Subsequently,
the obtained α̂ reblends the plain F and B images similar to
the original alpha (α), and the resulting comparison is made
between I and Î . Fig. 5(b) presents the accuracy results of the
image matting alpha estimation task with the shared RNG-based
design. Fig. 5(c) shows the performance of the same task with
the proposed bit-stream generator.

VI. HARDWARE COST COMPARISON

In this section, we conduct a thorough hardware cost evalu-
ation to assess the cost-efficiency of generating correlated bit-
streams using both the shared RNG approach and the proposed
method. The designs were synthesized using Synopsys Design
Compiler v2018.06 using the 45 nm FreePDK gate library.
Table IV compares the hardware costs in terms of hardware
footprint, power and energy consumption, and critical path delay
(CPD) when generating one SC bit-stream (bit-stream Y in
Fig. 3) of length N = 28 with Sobol and VDC sequences.
The CPD parameter demonstrates the latency for generating

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on April 02,2024 at 19:24:02 UTC from IEEE Xplore. Restrictions apply.

200 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 23, 2024

TABLE V
ISO-ACCURACY HARDWARE COST COMPARISON OF GENERATING TWO LD

BIT-STREAMS WITH THE SHARED RNG AND THE PROPOSED METHOD

one SC bit, while the generation time exhibits the total time
to generate the whole SC bit-stream. The total hardware cost
when generating the two SC bit-streams with the shared RNG
method (Fig. 1(a)) and the proposed method (Fig. 3) are reported
in Table V. The hardware costs with the proposed bit-stream
generator are slightly higher than the shared RNG counterpart
due to exploiting a down counter, an AND gate, and a NOT
gate to generate the second SC bit-stream (bit-stream X in
Fig. 3). This minor overhead is negligible compared to the
significant enhancement in the accuracy results achieved by
utilizing our proposed bit-stream generation method. For an
iso-accuracy comparison, we assessed the number of clock
cycles (corresponding to the length of bit-streams) to achieve the
same accuracy level with the two approaches. Table V compares
energy consumption numbers for both VDC-based and Sobol-
based designs. As it can be seen, the VDC-based designs lower
the processing time, resulting in lower energy consumption
compared to the Sobol-based designs. Finally, we observed that
the Sobol-based designs show poor performance when reducing
the length of bit-streams, as their accuracy sharply declines when
decreasing the length. This was in contrast to the VDC-based
bit-streams, which demonstrated greater resilience to reducing
the bit-stream length.

The VDC sequence in base-ρ (radix-ρ) can be derived by
reversing the integer digits in that base and converting them
to a fractional number within the [0,1) interval. Similarly, the
first Sobol sequence is constructed by reversing the output bits
of a counter. Generating VDC sequences with powers of 2
bases can be accomplished through a straightforward counter
implementation, incurring no additional costs [20]. However,
for bases other than powers of 2, the hardware design becomes
more intricate, leading to higher costs.

By integrating a counter for VDC with bases 2, 4, 8, and
16, the hardware footprint is remarkably small compared to
the Sobol cases. In all scenarios, the inclusion of a down
counter and an AND gate is necessary to generate the second
correlated bit-stream. In terms of hardware efficiency, the VDC
design demonstrates an area reduction of 4× and a remarkable
energy efficiency improvement of 9× when compared to the
Sobol design. Furthermore, the VDC bit-stream generation is
1.18× faster than the Sobol counterpart. Considering the lower

accuracy of the LFSR designs, integrating lightweight VDC
generators with the proposed bit-stream generator opens up new
design possibilities, providing a high accuracy similar to the
Sobol sequences.

VII. CONCLUSION

This study provides a novel perspective on stochastic comput-
ing (SC)-based division by focusing on bit-stream generation.
Prior art offers low-cost and highly efficient solutions using
correlated bit-streams; however, this work discusses various
options for bit-stream generation. Linear-feedback shift reg-
ister (LFSR) is the most common random number generator
(RNG) used in the SC literature. The state-of-the-art designs,
however, use finite-state machine (FSM)-based low-discrepancy
(LD) sequence generators. In this study, we explored an ef-
ficient correlated bit-stream generation method that employs
different LD sequences for high accuracy. Particularly, we
showed that counter-based generators such as Van der Corput
(VDC) can provide high hardware efficiency compared to prior
LFSR and FSM-based Sobol generators. We employed the
proposed approach for implementing the division operations
in the image matting problem, which is implemented for the
first time in the SC literature. It is important to mention that
even though the proposed design needs slightly more hardware,
the tradeoff in area-delay is favorable. Considering hardware
efficiency, the versatile, low-cost, and highly efficient gener-
ator offers a solution for all SC dividers requiring correlated
bit-streams.

REFERENCES

[1] B. R. Gaines, “Stochastic Computing Systems,” in Advances in Informa-
tion Systems Science. Boston, MA, USA: Springer, 1969, pp. 37–172.

[2] A. Alaghi, W. Qian, and J. P. Hayes, “The promise and challenge of
stochastic computing,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 37, no. 8, pp. 1515–1531, Aug. 2018.

[3] V. T. Lee, A. Alaghi, and L. Ceze, “Correlation manipulating circuits for
stochastic computing,” in Proc. Des., Automat. Test Eur. Conf. Exhib.,
2018, pp. 1417–1422.

[4] M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan, “Low-cost sorting
network circuits using unary processing,” IEEE Trans. Very Large Scale
Integr., vol. 26, no. 8, pp. 1471–1480, Aug. 2018.

[5] X. Jiao, “An improved stochastic decoding algorithm of LTE turbo codes,”
in Proc. Int. Conf. Wireless Algorithms, Syst., Appl., 2012, pp. 301–308.

[6] S. S. Tehrani, S. Mannor, and W. J. Gross, “Survey of stochastic compu-
tation on factor graphs,” in Proc. 37th Int. Symp. Mult.-Valued Log., 2007,
pp. 54–54.

[7] T.-H. Chen and J. P. Hayes, “Design of division circuits for stochas-
tic computing,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, 2016,
pp. 116–121.

[8] S.-I. Chu, “New divider design for stochastic computing,” IEEE Trans.
Circuits Syst. II: Exp. Briefs, vol. 67, no. 1, pp. 147–151, Jan. 2020.

[9] S. Wang et al., “Highly accurate division and square root circuits by ex-
ploiting signal correlation in stochastic computing,” Int. J. Circuit Theory
Appl., vol. 50, pp. 1375–1385, 2022.

[10] J. Wang and M. F. Cohen, “Image and video matting: A survey,” Found
Trends Comput. Graph. Vis., vol. 3, pp. 97–175, 2007.

[11] Y. Zhou, G. Xie, J. Han, and Y. Zhang, “Absolute subtraction and di-
vision circuits using uncorrelated random bitstreams in stochastic com-
puting,” in Proc. IEEE/ACM Int. Symp. Nanoscale Architectures, 2021,
pp. 1–6.

[12] J. H. Anderson, Y. Hara-Azumi, and S. Yamashita, “Effect of LFSR
seeding, scrambling and feedback polynomial on stochastic computing
accuracy,” in Proc. Des., Automat., Test Europe Conf., Exhib., 2016,
pp. 1550–1555.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on April 02,2024 at 19:24:02 UTC from IEEE Xplore. Restrictions apply.

MOGHADAM et al.: LOW-COST AND HIGHLY-EFFICIENT BIT-STREAM GENERATOR FOR STOCHASTIC COMPUTING DIVISION 201

[13] S. Asadi, M. H. Najafi, and M. Imani, “A low-cost FSM-based bit-stream
generator for low-discrepancy stochastic computing,” in Proc. Des., Au-
tomat., Test Europe Conf., Exhib., 2021, pp. 908–913.

[14] I. M. Sobol, “On the distribution of points in a cube and the approximate
evaluation of integrals,” USSR Comp. Math. Math. Phys., vol. 7, no. 4,
pp. 86–112, 1967.

[15] J. V. d. Corput, “Verteilungsfunktionen I,” in Proc. Kon. Ned. Akad. v.
Wetensch, 1935, pp. 813–821.

[16] M. H. Najafi, D. J. Lilja, and M. Riedel, “Deterministic methods
for stochastic computing using low-discrepancy sequences,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Des., 2018, pp. 1–8.

[17] S. Liu and J. Han, “Energy efficient stochastic computing with sobol
sequences,” in Proc. Des., Automat., Test Eur. Conf., Exhibit., 2017,
pp. 650–653.

[18] S. Liu and J. Han, “Toward energy-efficient stochastic circuits using
parallel sobol sequences,” IEEE Trans. Very Large Scale Integr., vol. 26,
no. 7, pp. 1326–1339, Jul. 2018.

[19] M. H. Najafi, D. Jenson, D. J. Lilja, and M. D. Riedel, “Performing
stochastic computation deterministically,” IEEE Trans. Very Large Scale
Integr., vol. 27, no. 12, pp. 2925–2938, Dec. 2019.

[20] M. S. Moghadam et al., “P2LSG: Powers-of-2 low-discrepancy sequence
generator for stochastic computing,” in Proc. Asia South Pacific Des.
Automat. Conf., 2024, pp. 1–8.

[21] S. Asadi, M. H. Najafi, and M. Imani, “CORLD: In-stream correlation ma-
nipulation for low-discrepancy stochastic computing,” in Proc. IEEE/ACM
Int. Conf. Comput. Aided Des., 2021, pp. 1–9.

[22] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation on
stochastic bit streams digital image processing case studies,” IEEE Trans.
Very Large Scale Integr., vol. 22, no. 3, pp. 449–462, Mar. 2014.

[23] Z. Li et al., “HEIF: Highly efficient stochastic computing-based inference
framework for deep neural networks,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst, vol. 38, no. 8, pp. 1543–1556, Aug. 2019.

[24] A. Alaghi and J. P. Hayes, “Exploiting correlation in stochastic circuit
design,” in Proc. IEEE 31st Int. Conf. Comput. Des., Asheville, NC, USA,
2013, pp. 39–46.

[25] T. J. Baker and J. P. Hayes, “CeMux: Maximizing the accuracy of stochas-
tic MUX adders and an application to filter design,” ACM Trans. Des.
Automat. Electron. Syst., vol. 27, pp. 1–26, 2022.

[26] R. Ananth, “Programmable supervisory circuit and applications thereof,”
U.S. Patent 6618711, Sep. 2003.

[27] M. Faix et al., “Cognitive computation: An exact Bayesian inference
stochastic machine,” Int. J. Softw. Sci. Comput. Intell., vol. 9, no. 3,
pp. 37–58, 2017.

[28] M. S. Moghadam et al., “Accurate and energy-efficient stochastic com-
puting with van der Corput sequences,” in Proc. IEEE/ACM Int. Symp.
Nanoscale Architectures, 2023, pp. 1–6.

[29] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An architecture
for fault-tolerant computation with stochastic logic,” IEEE Trans. Comput.,
vol. 60, no. 1, pp. 93–105, Jan. 2011.

[30] R. Szeliski, Computer Vision Algorithms and Applications. Texts in Com-
puter Science. London, U.K.: Springer, 2011.

[31] A. Levin, D. Lischinski, and Y. Weiss, “A closed-form solution to natural
image matting,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2,
pp. 228–242, Feb. 2008.

[32] S. Aygun, M. H. Najafi, M. Imani, and E. O. Gunes, “Agile simula-
tion of stochastic computing image processing with contingency tables,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 42, no. 10,
pp. 3474–3478, Oct. 2023.

[33] M. H. Najafi and D. J. Lilja, “High-speed stochastic circuits using syn-
chronous analog pulses,” in Proc. 22nd Asia South Pacific Des. Automat.
Conf., 2017, pp. 481–487.

[34] M. Ranjbar, M. E. Salehi, and M. H. Najafi, “Using stochastic architectures
for edge detection algorithms,” in Proc. 23rd Iranian Conf. Elect. Eng.,
2015, pp. 723–728.

[35] R. Wang, J. Han, B. F. Cockburn, and D. G. Elliott, “Stochastic circuit
design and performance evaluation of vector quantization for different
error measures,” IEEE Trans. Very Large Scale Integr., vol. 24, no. 10,
pp. 3169–3183, 2016.

[36] S. Aygün, M. Altun, and E. O. Güneş, “Sobel filter operation in image
processing via stochastic arithmetic-logic unit design,” in Proc. 25th Signal
Process. Commun. Appl. Conf., 2017, pp. 1–4.

[37] N. Onizawa, D. Katagiri, K. Matsumiya, W. J. Gross, and T. Hanyu, “Gabor
filter based on stochastic computation,” IEEE Signal Process. Lett., vol. 22,
no. 9, pp. 1224–1228, Sep. 2015.

[38] N. Onizawa, D. Katagiri, K. Matsumiya, W. J. Gross, and T. Hanyu, “An
accuracy/energy-flexible configurable Gabor-filter chip based on stochas-
tic computation with dynamic voltage–frequency–length scaling,” IEEE
J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 3, pp. 444–453, Sep. 2018.

[39] K. Boga, N. Onizawa, F. Leduc-Primeau, K. Matsumiya, T. Hanyu, and
W. J. Gross, “Stochastic implementation of the disparity energy model for
depth perception,” in Proc. IEEE Workshop Signal Process. Syst., 2015,
pp. 1–6.

[40] H. Abdellatef et al., “Accurate and compact stochastic computations
by exploiting correlation,” Turkish J. Elect. Eng. Comput. Sci., vol. 27,
pp. 547–564, 2019.

[41] S. Dai, M. Han, W. Xu, Y. Wu, and Y. Gong, “Soft edge smoothness prior
for alpha channel super resolution,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2007, pp. 1–8.

[42] J. Wang and M. F. Cohen, “Optimized color sampling for robust matting,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2007, pp. 1–8.

[43] K. He, C. Rhemann, C. Rother, X. Tang, and J. Sun, “A global sampling
method for alpha matting,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2011, pp. 2049–2056.

[44] D. Cho, S. Kim, Y. -W. Tai, and I. S. Kweon, “Automatic trimap generation
and consistent matting for light-field images,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 39, no. 8, pp. 1504–1517, Aug. 2017.

Mehran Shoushtari Moghadam (Graduate Student
Member, IEEE) received the B.Sc. degree in com-
puter engineering- hardware and the M.Sc. degree
in computer engineering- computer systems architec-
ture from the University of Isfahan, Isfahan, Iran, in
2010 and 2016, respectively. He is currently working
toward the Ph.D. degree with the School of Com-
puting and Informatics, Center for Advanced Com-
puter Studies, University of Louisiana at Lafayette,
Lafayette, LA, USA. He distinguished as one of the
top-ranking students during both his B.Sc. and M.Sc.

studies. He has more than ten years of experience as a computer hardware
and network specialist in the industry. His research interests involve emerging
and unconventional computing paradigms, including energy-efficient stochastic
computing, real-time and highly-accurate hyperdimensional computing, and
hardware security.

Sercan Aygun (Member, IEEE) received the B.Sc.
degree in electrical & electronics engineering and
a double major in computer engineering from Es-
kisehir Osmangazi University, Türkiye, in 2013, the
M.Sc. degree in electronics engineering from Istanbul
Technical University, Istanbul, Türkiye, in 2015, the
second M.Sc. degree in computer engineering from
Anadolu University, Eskisehir, Türkiye, in 2016, and
the Ph.D. degree in electronics engineering from Is-
tanbul Technical University, in 2022. He is currently
a Postdoctoral Researcher with the University of

Louisiana at Lafayette, Lafayette, LA, USA. His Ph.D. work has appeared in sev-
eral Ph.D. Forums of top-tier conferences, such as DAC, DATE, ASP-DAC, and
ESWEEK. He works on emerging computing technologies, including stochastic
computing in computer vision and machine learning. He was the recipient of
the Best Scientific Research Award of the ACM SIGBED Student Research
Competition (SRC) ESWEEK 2022 and the Best Paper Award at GLSVLSI’23.
Dr. Aygun’s Ph.D. work was recognized with the Best Scientific Application
Ph.D. Award by the Turkish Electronic Manufacturers Association.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on April 02,2024 at 19:24:02 UTC from IEEE Xplore. Restrictions apply.

202 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 23, 2024

Sina Asadi received the B.Sc. degree in computer
engineering from the Amirkabir University of Tech-
nology, Tehran, Iran, in 2014, the M.Sc. degree in
computer engineering from the Sharif University of
Technology, Tehran, Iran, in 2016, and the Ph.D. de-
gree in computer engineering from the University of
Louisiana at Lafayette, Lafayette, LA, USA, in 2023.
He is currently a Faculty Member of the Electrical
and Computer Engineering Department, College of
Engineering, University of Louisiana. His research
interests include approximate and stochastic comput-

ing, fault-tolerant system design, machine learning and intelligent systems,
computer architecture, and electronic circuits. He was selected as a DAC Young
Fellow in DAC 2020 and the Young Programs Award at the DATE 2021.

M. Hassan Najafi (Senior Member, IEEE) received
the B.Sc. degree in computer engineering from the
University of Isfahan, Isfahan, Iran, the M.Sc. de-
gree in computer architecture from the University of
Tehran, Tehran, Iran, and the Ph.D. degree in elec-
trical engineering from the University of Minnesota,
Twin Cities, MN, USA, in 2011, 2014, and 2018,
respectively. He is currently an Assistant Professor
with the School of Computing and Informatics, Uni-
versity of Louisiana, Lafayette, LA, USA. He has
authored/co-authored more than 75 peer-reviewed

papers and has been granted five U.S. patents with more pending. His research
interests include stochastic and approximate computing, unary processing, in-
memory computing, and hyperdimensional computing. In recognition of his
research, he was the recipient of the 2018 EDAA Outstanding Dissertation
Award, Doctoral Dissertation Fellowship from the University of Minnesota,
and Best Paper Award at the ICCD’17 and GLSVLSI’23. Dr. Najafi has been
an Editor of IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS

AND SYSTEMS.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on April 02,2024 at 19:24:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

